Learning state machine-based string edit kernels
نویسندگان
چکیده
منابع مشابه
Learning state machine-based string edit kernels
During the past few years, several works have been done to derive string kernels from probability distributions. For instance, the Fisher kernel uses a generative model M (e.g. a hidden markov model) and compares two strings according to how they are generated by M . On the other hand, the marginalized kernels allow the computation of the joint similarity between two instances by summing condit...
متن کاملLearning String Edit Distance
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn the optimal string edit dis...
متن کاملLearning String Edit Distance 1
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn a string edit distance func...
متن کاملString Kernels, Fisher Kernels and Finite State Automata
In this paper we show how the generation of documents can be thought of as a k-stage Markov process, which leads to a Fisher kernel from which the n-gram and string kernels can be re-constructed. The Fisher kernel view gives a more flexible insight into the string kernel and suggests how it can be parametrised in a way that reflects the statistics of the training corpus. Furthermore, the probab...
متن کاملLarge Scale Learning with String Kernels
In applications of bioinformatics and text processing, such as splice site recognition and spam detection, large amounts of training sequences are available and needed to achieve sufficiently high prediction performance on classification or regression tasks. Although kernel-based methods such as SVMs often achieve state-of-the-art results, training and evaluation times may be prohibitively larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2010
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2009.12.008